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A FORTRAN COMPUTER PROGRAM FOR CALCULATING THE PROLATE

SPHEROIDAL ANGULAR FUNCTIONS OF THE FIRST KIND

INTRODUCTION

The Helmholtz or scalar wave equation for steady waves (72 + k2)p _ 0,

where k - 21./X with X equal to the wavelength, is separable in prolate

spheroidal coordinates (&, n, *). The factored sGlution is written as

R(c, )S(c,n),(4). Here c = ka/2, where a is the interfocal distance of the

elliptic cross section of the spheroid.

The angular function of the first kind S(1)(cn) is one of two indepen-
mZ

dent solutions to the ordinary differential equation in the angle coordinate

n arising from the separation of variables. This solution is characterized

by the four parameters m, Z, c, n. For each of the choices of m, Z, c, and n

there exists a set of solutions to the prolate angular equation, each

solution characterized by a separation constant or eigenvalue Ama. As with

the corresponding associated Legendre functions of spherical geometry, it is
-1

often convenient to specify the argumtt n in terms of the angle 6 - cos n;
, = S(1)(c,cose)

The computer program PANGFN calculates numerical values for the angular

function of the first kind S )(c,n) and the associated eigenvalues A for

desired values of m, c, and 0. PANGN is intended to replace the prolate

portion of the FORTRAN computer program ANGLFN [i], which was previously

developed at the Naval Research Laboratory (NRL) to evaluate both the prolate

and the oblate angular functions of the first kind. Unfortunately, ANGLFN

and two companion computer programs for calculating the prolate and oblate

radial functions of both kinds and tneir first derivatives [2,3] were

developed around the large exponent size (±307) of the CDC3800 computer at

NRL. These programs are not easily modified to run on computers with a

significantly smaller exponent range. The program PANGFN, however, is

designed to run on computers with any exponent range. It is written in

universal FORTRAN and should run on any computer that accepts this language.

Manuscript submitted December 10, 1980.



Similar universal computer programs will be developed in the future for the

oblate angular functions, prolate radial functions, and oblate radial

functions. A universal program called LINPRO (4] already exists for

calculating the linear prolate functions and eigenvalues. These functions,

which are useful in the representation of band-limited and time-limited

physical processes, are constructed from the prolate angular functions with

m set equal to zero.

ANALYS IS

The prolate spheroidal system can be formed by rotating the two-

dimensional elliptic coordinate system, consisting of ellipses and hyperbolas,

about the major axis of the ellipse. The prolate spheroidal coordinates ( ,

n, ) with I : -1 -, -1 _ n - 1, and 0 -<  : 2,r are related to the Cartesian

coordinates (x,y,z) by the transformations:

x - (a/2)[( 2 - 1)(I - n2)] cos , (1)

y - (a/2)[(& 2 - 1)(1 - n2)]sin , (2)

and

z - an/2 . (3)

The spheroidal coordinates & - const., n a const., and - const. define

the following set of orthogonal surfaces, as .. Fig. I:

x2 + Xt2  z2

ellipsoid of revolution: + + = 1 , (4)
(a/2)2Q(2-I) (a/2)2j.2

hyperbolcid of two sheets: -1 , (5)
(a/2)2(1-n2) (a/2)2rn2

and

-1

half plane containing the z-axis: tan (y/x) . (6)

2



IF

'Al

Fig. t. The prolate spheroidal coordinate system

Separation of the Helmholtz equation

(72 + k2) ~l=0 (7)

in prolace spheroidal coordinates yields 
the following solution:

P, (c'O , (8))'D

where RZ(c, ) is the radial function, 
S m(c,i) is the angular function, and

m()is the azimuthal function.

The functions R (c ,0, SZ(c,n), and t ( ) satisfy the fcollowing ordinary

differential equations:

i -2 dR Z CZ+M
[W 1 _ 

- [A.~ 
2 2 +2I~ 0 (9)
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A dSC 2 2 
- m2-m_]I + 0, (10)

d2€-dT- + 0 2€ (11)

where m and A are the two separation constants or eigenvalues occuring in

the separation of variables. Throughout the rest of this manuscript the term

eigenvalue is understood to be Aat, unless otherwise stated.

In physical problems in which the field has to be periodic and unique

over the range of the azimuthal coordinate , it is required that m be an

integer. For fixed m and c 1 0 the numbers Ahi for which Eqs. (9) and (10)

have non-trivial convergent solutions are ordered numerically in an

ascending series and labeled with the integers t - m, m+1, m+2,.... When

c---0, Eq. (10) reduces to the ordinary differential equation of the

associated Legendre functions whose eigenvalues Am are equal to Z(t+1).

The rwo independent solutions of Eq. (9) are known as the radial function

(1)
of the first kind Ri,) (c,E) and the radial function of the second kind
R(2)

j (c ". Similarly, the sclutions of Eq. (10) are known as the angular
m (1)

function of the first kind SmZ (c, ) and the angular function of the secondkuion o ( h2fr) id

kind S(~)(c,n). Excellent discussions of the uses and properties of these

functions are found in the monographs by Meixner and Schifke (5] and Flammer

(6].

Three volumes of tables of numerical values for the prolate radial

functions and their first derivatives with resDect to were published in

1970 (7]. These volumes contain entries for the following range of parameter:

m - 0 (Volume 1), m = 1 (Volume 2), m = 2 (Volume 3), L = m, m+1, ..., m+4 9;

= 1.00000001, 1.0000001, ... , 1.01, 1.02 (0.02) 1.2*, 1.4 (0.2) 2.0, 4.0

(2.0) 10.0; c = 0.1 (0.1) 1.0, 2.0 (1.0) 10.0, 12.0 (2.0) 30.0, 35.0, 40.0.

A single volume of tables of numerical values for the prolate angular

functions and the linear prolate eigenvalues was published in 1975 (8]. The

range of variables covered in this volume is m = 0; Z = 0 (1) 49; e - 0* (10)
90, where n = cose; c = 0.1 (0.1)1.0, 2.0 (1.0) 10.0, 12.0 (2.G) 30.0, 35.0,

The notation 1.02 (0.02) 1.2 indicates 1.02, 1.04, 1.06, ... , 1.2.
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40.0. Three volumes of oblate radial functions [9] and one volume of oblate

angular functions (10] were also published.

PROLATE ANGULAR FUNCTION OF THE FIRST KIND

Since the angular function of the first kind SW (c,n) reduces to the

associated Legendre function of the first kind Py(n) in the limit c--.O, it

is convenient to expand the angular function in the following series:

S () C 'n )  .'d( (12)

m n;--, 1n M+n

The expansion coefficients d n(cimt) are sometimes called the D constants.

The prime sign on the sum indicates that n - 0, 2, 4, ..., if Z-m is even,

or n - I, 3, 5, ..., if t-m is odd. This ensures that the angular function
s(1)r
SM(C,n) has the same evenness or oddness with respect to n as the correspond-

mzm (I)ing associated Legendre function P (), i.e., S )(c,n) is an even function of

n if Z-m is even and is an odd function if t-m is odd. Ferrers' (11]

definition of the associated Legendre functions has been adopted. Thus,

Pm (,) - (1-n2)m/
2 dmP n(n) (13)

n dn m

This leads to the following recursion relation:

(n-m+l)Pm(n) - (2n+l)nPm(n) - (n+m)pm_(n) (14)

n+i n ~ n,

where

pml (n) 0 (15)

m
Pom(n) - (2m-t)!!(l-n2)m /2 , (16)

m

with (2m-l)!! = (2m-)(2m-3)...(3)(1).
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Substitution of Eq. (12) into Eq. (10) and use of the above recursion

relation for the Legendre functions leads to the following three-term

recursion relation in terms of the D constants.

(2m+n+2)(2m+n+l) c2d
(2m+2n+3) (2m+2n+5) n+2

+ [(m+n)(m+n+l) - A * + 2(m+n)(m+n+t)-2m'-1 2 d (17)
M (2m+2n+3)(2m+2n-1) c dn

+ n(n-1) Z

(2m+2n-3)(2m+2n-1) c 2 d- 0

Equation (10) has two regular singularities at n - ±1. If the choice of

oi is arbitrary, solutions given by Eq. (12) may be divergent at either

n I or n - -1. It is necessary in physical applications, however, that

S )(c,n) be finite at both n - 1 and n - -1. It is also required that

Eq. (12) converge. This requires that dn+2/dn---0 as n Use of eigen-

values that satisfy both this conditiod and Eq. (17) above will result in

successful expansions of S(

The desired eigenvalues are obtained by a two-step process. First an

approximation to the eigenvalue is calculated by use of formulas such as a

polynomial expansion in c. With this approximation as a starting value,

the eigenvalue is then calculated using a variational procedure developed by

Bouwkamp (12]. In the Bouwkamp procedure the three-term recursion relation

found in Eq. (17) is rewritten in the following two forms:

Nm" n n_2 , (18)

n ._A n+2

and

m
m n

- -- ,n 2 > (19)n+2 n m - Nm

n

6



where

m [4mi 2-lI

Yn (m+n)(m+n+) + (c22) -1-(2m+2n-l) (2m+2n+3) n > 0 (20)

8m n(n-1) (2ran (2m+n-l)c>(
a (2m+2n-I) 2 (2m+2n-3)(2mi-2n+1) , n > , (21)

m (2mr+n)(2re+n-) c2 d n >2 (22)
n (2m+2n-l)(2m+2n+l) d 2

Requiring that d 2/d-0 as n-- 0 is equivalent to requiring that .-

n+2 n n
as n--. Equation (18)" can be rewritten as a continued fraction in terms

m m 8m
of y , 2' "' n' Bn+2' m  ..., and Amp. Equation (19) can also be

rewritten as a continued fraction in terms of m m M - mYn-2' Yn-41 "'' n2' n-4,

and A , using the fact that NT -y0 Amp and N -Ym + Amp to

me2 0 3Z Niy 1  A
terminate the sequence.

The starting value for the eigenvalue Amy is inserted into the two

continued fractions, one with diminishing subscripts and one with increasing

subscripts. m is calculated using both expressions, and the difference"'-m+2
in the two values is used to determine a correction to AmZ. The process is

repeated until Amt is obtained to the desired degree of accuracy.

When the value of Amz has been accurately determined, the D constants

can be calculated by successive application of Eq. (17). The D constants

obtained from Eq. (17) are un-normalized since this equation is homogeneous.

A suitable normalization is cstablished by requiring that the angular

functions have the same normalization as the associated Legendre functions.

Thus

1 22Zim2

mZ Y .cn) dn (n) 2 dn = (2-I) (Z-m) . (23)

-L

Subtittin th exanson orS (1) (cn) into Eq. (23) and using the known
~Substituting the expansion for (1)

orthogonal properties of the Legendre functions provides the following

7



normalizing relation for the D constants:

,0 (n+2m) I d22 n 2 (Z+m) !
2L..j (2m+2n+l) n! (2+l) (7-m) " (24)
n-O,1

This normalization scheme was first used by 'Meixner and Schafke (5]. It has

the practical advantage of eliminating the need to numerically evaluate the

normalization factorf[()(c,r)]2dn which is often encountered in problems

involving expansions in angular functions. Once the D constants have been

normalized, the angular function can be evaluated using Eq. (12). Alterna-

tively, the angular function can be evaluated using un-normalized D constants

and then corrected by multiplying by the ratio of the normalized to

un-normalized value of any one of the D constants, say dZ_m .

BRIEF DESCRIPTION OF PANGFN

The computer program PANGFN calculates, in double precision arithmetic,

numercal vlues or A(1)C.nue a v and S (c,n) for desired values of m, t, c, and e,
where 8 c cos (n). The program is written in universal FORTRAN and should

run on any machine that accepts the language. The main program calls four

subroutines: "PLEG", "GETEIG", "CONVER", and "OUTPUT". "PLEG" generates the

associated Legendre functions; "GETEIG" produces an approximation to the

eigenvalue for starting the Bouwkamp procedure; "CONVER" uses the Boutikamp

procedure to determine the eigenvalue; and "OUTPUT" prints the final

results. The processes of these routines are described in more detail in the

section entitled COMPUTATIO,,1L PROCEDURES,

PANGFN is designed to accommodate the exponent range and word length of the
user's computer. It is necessary to change the first two executable

statemenLs in the program to correspond to the user's computer. These

statements specify NDEC, the number of decimal digits available for double

precision numbers, and NEX, the maximum possible exponent. In the unlikely

event that NDEC exceeds 36, the value for 7r given by PI in the third

executable statement must be extended to NDEC digits. The user should also

set the array dimensions large enough to accommodate the desired parameter

ranges, as described in the section entitled DI}iENSIONS AND STORAGE.

8



The remainder of this report describes the program PANGFN. Included are

a listing of the significant FORTRAN variables and a description of the major

computational blocks. A discussion of parameter input and resulting output

follows. A listing of the program and a sample output are also given.

SIGNIFICANT FORTRAN VARIABLE NAMS

ARG: Value of the angle 9 for which the angular function S(1)- (c,cose)

is calculated.

ARGG: Temporary holding array for outputing ARG.

ARGI: Input parameter and initial value of the angle e for which the

angular function S 
)" (c,cos8) is desired.

BLIST: Array used in the Bouwkamp procedure. It contains the m
n

coefficients defined in Eq. (21).

C: c.

Cl: Input parameter and initial value of c.

CL: Eigenvalue Ant. Initially equal to the approximation returned

by subroutine "GETEIG", then converges to A m during Bouwkamp

procedure.

CLSPAC: The estimated spacing between two eigenvalues. Used to determine

if the Bouwkamp procedure has cunverged to the proper eigenvalue

and to approximate an upper bound on a new estimate if a new

starting value is needed.

COEF: Term used in computing the normalizing factcr.

CSQ: c2 .

DARG: input parameter and step sfun o used to generate ARG.
DC: Input parameter and step size used to generate c.

DEC: A constant set equal to 10 -(NDEC+
I) Used to determine

convergence of the angular function series of Eq. (12).

DEC2: A constant set equal to 10- . Used to determine

convergence of the Bouwkamp eigenvalue procedure.

DNUM: The normalizing factor used to provide Meix'Ler-SchHfke

normalization for the angular functions. It is equal to the

normalized value of dg.

9



EIG2, EIG3, Previous eigenvalues used to generate the eigenvalue estimate

and EIG4: when Z-m is large enough.

ENR: The array used to contain the D constant ratios returned from
"CONVER". The coefficients Nm are calculated from these ratios

n
in the main program.

ENR(I) - d2 1 /d 2 1 -2 , if Z-m is even,

ENR(I) - d2 1+i/d2 1 -1 , if Z-m is odd.
EX: onsant et o I (N EX - 5 )

EX: Constant set to 1 0  Used in testing numbers to prevent

overflow on the computer.

FL: The eigenvalue approximation returned by "GETEIG".

FTEM: The largest term in the series of Eq. (12) used to form the

angular function. It is used to estimate the resulting

subtraction error present in the angular function.

GLIST: Array used in "CONVER" as part of the Bouwkamp procedure. It

contains the y coefficients as described in Eq. (20).

IBLIM: The number of terms used in the angular function series of

Eq. (12), determined as follows: IBLIM - LIMI/2 - IX.

IM: Input parameter and the increment used to generate desired

values for m.

IW6: (Z-m)/2, truncated to an integer.

IX: Equals zero if Z=m is even; equals one if Z-m is odd.

IM: IX-1.

JHI: The number of Legendre functions to be calculated for a given

argument, determined as follows: JHI - 2*(LNUM+CMAX+NDEC),

where LMIAX = C1 + (NC-I)*DC is the largest value desired for c.

L: Z.

LAMI-LAM5: Coefficients used in "GETEIG" to generate the power series

expansion for the eigenvalue approximation in terms of c.

LIM1: 2*(L-M+C+NDEC).

LNUM: The number of successive values of t starting with Z m for

which angular function values are desired.

M: M.

MAXAC: The number of decimal digits in the printed output for the

angular functions. This parameter is set to eight in this

10



version of the program. See the section entitled ACCURACY OF

RESULTS for information on when and how to change the parameter.

IMIN: Input parameter and starting value for m.

MNqUM: Input parameter indicating the number of values of m for which

angular function values are desired.

NACC: Array containing a measure of the number of decimal digits that

are accurate in the printed value for the angular function.

NARG: Input parameter indicating the number of values of 6 for which

angular function values are desired.

NC: Input parameter indicating the number of values of c for which

angular function values are desired.

NDEC: Initialization parameter that is set equal to the number of

decimal digits available on the user's machine in double

precision arithmetic.

NEX: Initialization parameter that is set equal to the maximum

exponent size that is available on the user's machine in double

precision arithmetic.

P: A doubly dimensioned array that contains the ratios of

successive associated Legendre functions, where P(k,l) = 1,

P(k,j) = P m 1Pj, with Pm given by Eq. (13). The index k
m+j M+J-' n

refers to the value of e. The special cases of e = 0, 90, and

180' are handled somewhat differently, as described in the

section entitled COMPUTATIONAL PROCEDURES.

PI: Value for 7r, specified to 36 digits but truncated to NDEC

digits by the computer.

PLEGI: Vector of length NARG containing scaling coefficients used to

prevent an overflow while forming P (n).
mPNO&M Equal to lOglo of P m(n) as given in Eq. (16).

PTEMP: Vector of length NARG which contains values for Pm(n). These

values are scaled, if necessary, to prevent computer overflow,

by 10PLEG1

PTEST: Constant set to 10- 7 degrees. Input values of 6 are set equal

to 0, 90. or 1800 if they are within PTEST of these values.

R:-m.

11



RL:

RL2: 2e.

RIM: m.

RI2: 2m.

S: A temporary holding array for the angular function prior to

output.

SIGN: The sign of dt m .

Si: The angular function S (c"n).

DIMENSIONS AND STORAGE

The storage requirements for the program PANGFN are dominated by

dimensioned arrays. Everything else takes about 10,000 words of storage.

The minimum dimension requirement (M.D.R.) for each array is determined by

the desired range of parameters as follows:

1. The M.D.R. for BLIST, GLIST, and ENR is given by

(LNUM + CMAX + NDEC) where LNUM is the number of values

of Z desired, CMAX = C1 + (NC-I) *DC is the largest value

of c desired, and NDEC is the number of decimal digits in

double precision words on the user's computer. This

dimension is set at 250 in the listed version of PANGFN.

2. The M.D.R. for PLEGI, PNOPM, and PTEMP is NARG, the

number of values of 0 for which angular function values

are desired. This dimension is set at 10 in the listed

version of PANGN. It can be increased (or decreased) if

more (or fewer) values of e are desired.

3. The M.D.R.'s of the doubly-dimensioned array P(K,J) are

NARG for K and JHI = 2*(LNUM + CMAX + NDEC) for J. The

value for JHI is just twice that of the M.D.R. for BLIST,

GLIST, and ENR given above in Item i. JHI is set equal

to 500 in the listed version of PANGFN.

4. All other arrays have a dimension of three. This is

required for the printed output format.

If adequate computer storage is available, it is advisable to set the

dimensions large enough to accommodate any anticipated parameter input and

then forget about them.

12



PARAMETER INPUT

The input to PANGFN consists of a series of data cards as follows:

Data Card 1: Format 15 - This card contains the integer MMIN, located in

the first five spaces of the card, right justified. MMIN is

the smallest value of m to be used in the computation of

the angular function.

Data Card 2: Format 15 - This card contains the integer IM, located in the

first five spaces of the card, right justified. IM is the

increment used to generate subsequent values of m from 1MIN.

Data Card 3: Format 15 - This card contains the integer MNUM, located in

the first five spaces of the card, right justified. LNUM is

the number of values of m for which angular function values

are desired.

Data Card 4: Format 15 - This card contains the integer LNUM, located in

the first five spaces of the card, right justified. LNUM is

the number of values of X- for which angular function values

are desired.

Data Card 5: Format D20.10 - This card contains the value of ARGI,

located in the first twenty spaces of the card. ARG is the

initial value for e and is used with DARG to generate all
the desired values of e.

Data Card 6: Format D20.10 - This card contains the value of DARG, located

in the first twenty spaces of the card. DAR is the

increment used to generate subsequent values of 6 from ARG1.

Data Card 7: Format 15 - This card contains the integer NARG, located in

the first five spaces of the card, right justified. NARG

is the number of values of 8 for which angular function

values are desired.

Data Card 8: Format D20.10 - This card contains the value of C1, located

in the first twenty spaces of the card. C1 is the initial

value of c used with DC to generate subsequent values of c.

Data Card 9: Format D20.10 - This card contains the value of DC, located

in the first twenty spaces of the card. DC is the increment

used to generate subsequent values of c.

13



Data Card 10: Format 15 - This card contains the integer NC, located in

the first five spaces of the card, right justified. NC is

the number of values of c for which angular functions values

are desired.

The program can easily be modified if the user desires to specify values

for n - cosO rather than 6. The following changes are required:

I. Change ARG in statement 72 in the main program to BARG.

Add BARG to double precision list.

2. Add statement ARG - DARCOS(ARG*PI/180.DO) immediately

following statement 72 in the main program.

3. Change statement 150 in the main program to read ARGG(ISTEP)

BARG.

4. Change statment 10 in subroutine "PLEG" to read BARG - ARG.

5. Add statement ARG - DARCOS(ARG*PI/180.DO) immediately

following statement 10 in "PLEG".

6. Change the print format for A(I) B n in statement 1 of

subroutine "OUTPUT" from F8.3 to F8.5 to provide five digits

to the right of the decimal in the printed value for n.

PARAMETER RANGES

PANGFN was developed and tested on the PDP-11/45 computer at the

Underwater Sound Reference Detachment (USRD) of NRL for the following

parameter ranges:
00 - 6 - 1800

0.00001 - c 1 100

0 m- 100

m < _m+O0

PANGFN is not limited to these ranges, however. They were chosen to be

compatible with the relatively small core memory of the PDP-11/45 computer

at the USRD. By increasing the dimension specifications above those given

in the program listing in Appendix B to allow for more terms in the series

used to calculate the angular functions, the ranges on c and Z-m can be

increased indefinitely. The minimum dimension specifications required for

larger values of c and Z-m are given in the section entitled DIMENSIONS AND

STORAGE. There are no limitations on the range for m. Increasing m does

14



not require any changes in the dimension specifications. Values of c smaller

than 0.00001 can be chosen, if desired. However, the output format

specification for c given in statement 1005 must be changed from F15.5 to

include more digits to the right of the decimal.

The version of PANGFN listed in Appendix B was also run on the Texas

Instrument (TI) ASC computer at NRL and tested for the range of parameters

given above. The results were consistent with those for the PDP-11/45.

Since the TI ASC computer has more than 500,000 words of core memory, the

dimension specification can be increased substantially on this machine. As

an example, the dimensions of BLIST, GLIST, and ENR were increased to 2500

and the second dimension of P was increased to 5000 (JIH - 5000). Values

of the angular function were then successfully computed for c and Z-m both

larger than 1000.

COMPUTATIONAL PROCEDURES

There are four major computations in PANGFN: 1) determination of

the eigenvalue, 2) determination of a normalizing factor for the D

constants, 3) determination of the Legendre functions, and 4) calculation

of the angular function.

Determination of the Eigenvalues

Accurate eigenvalues Amt are obtained bv use of the variational

procedure developed by Bouwkamp. This procedure, found in subroutine

"CONVER", takes an approximate starting value for Anm and produces a
correction SA This correction is added to the starting value to obtain

a better approximation to the eigenvalue and the Bouwkamp procedure is

repeated with this new approximation as the starting value. Convergence

of the procedure is obtained when the relative contribution of the
correction becomes less than I0-(NDEC-1) where NDEC is the number of

decimal digits used in the calculation.

The key to obtaining the correct eigenvalue lies in the choice of the

(1)
initial approximation A ) . The Bouwkamp procedure will always converge to

an eigenvalue, but it will only converge to A when M is sufficiently

close. Otherwise it will converge to anorher eigenvalue Am, for the same

value of m and c. The reason for this is that the Bouwkamp procedure does
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not depend explicitly on Z but only implicitly through the eigenvalue

A m. In addition., since m is restricted to even or odd values depending

on whether Z-m is even or odd, respectively, Eq. (17) has two distinct

forms--one for even Z-m and the other for odd Z-m. Therefore, the Bouwkamp

procedure always converges to a characteristic value Am, such that Z' has

the same parity as 2.

The eigenvalues Am, 2. m, m+', ... form a monotonically increasing

sequence of positive real numbers. For each eigenvalue there exists a

region of convergence Qmf for which the Bouwkamp procedure will converge

to that eigenvalue. If the value of AM is slightly greater than the upper

bound of Qm or slightly lower than the lower bound of nme, convergence will

be to At+2 or A ,-2' respectively.

Several different methods are used to obtain approximations to the

eigenvalue for starting the Bouwkamp procedure. These include a power

series expansion in c2 , an asymptotic expansion in 1/c, entrapolation of

previous eigenvalues, and the approximation h Z Z(Z+1). The choice of

methods depends on the parameters c, m, and Z. Table I summarizes the

choices.

Table I - Choice of method to obtain eigenvalue approximation

c m Method

2 m, m+l c :_ 6 all c2 expansion
6 < c < 8 m < 4 1/c expansion

6 c- 8 m- 24 c2 expansion
c > 8 m < 10 + c 1/c expansion
c > 8 m - 10 + c Z(/+t)

t = m+2, m+3 c _ 5 all C2 expansion
5 < c 6 all extrapolation
6 < c -S 8 m < 4 1/c expansion
6 < c :S 8 m 2 4 extrapolation

c > 8 m ; 6 i/c expansion
c > 8 m > 6 extrapolation

2 = m+4  c s 8 all extrapolation
c > 8 m < 3 1/c expansion
c > 8 m ? 3 extrapolation

2. > m+4  all all extrapolation
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This method does not, however, guarantee that Amj lies in .; it

simply guarantees that A() is somewhat close to A . For some m, Z, and c

the region AmP may be extremely narrow and, therefore, the estimate Anm
would have to be very close to Am e to achieve convergence. No simple

method can absolutely guarantee that Am(1 lies in "qmZ A procedure has

therefore been developed tu determine if the resulting value Ami is actually

the correct eigenvalue. In order for Amy to be consistent with the other

eigenvalues previously obtained, it must satisfy the following conditions:

Am > A m,'-1

rae AZ A A
AMi - Am) m t- -

If Am passes both of these tests, it is the correct eigenvalue. If AL

fails the first inequality, it is equal to A Mt_2. In this case

A() can be consldered as a lower bound for Am. An upper bound can be
rae (1) t
determined by taking A ) + 1.5*CLSPAC where CLSPAC is the previous eigenvalue
spacing (A my- - A-2).

If AmC fails the second inequality, it is equal to AmZ+2. In this

case can be considered as an upper bound for Amn. A lower bound can be

taken as AmY- 1 . Once upper and lower bounds for the eigenvalue have been

established, a new starting value is taken as the mean of the bounds. The

Bouwkamp procedure is then repeated with this new approximation. The

resulting eigenvalue is tested to see whether it lies within the iounds.

If so, Am has been obtained and the process is concluded. if the resulting

eigenvalue is less than the lower bound, then A m must lie between the

starting value and the upper bound, so that the starting value becomes the

new lower bound. If the resulting eigenvalue is greater than the upper

bound, then A m must lie between the lower bound and the starting value,

so that the starting value becomes the new upper bound. A new starting

value is taken to be the mean of the new bounds, and the process is

repeated until convergence to Am is obtained.
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Determination of the Normalizing Factor

The variational procedure of Bouwkamp includes as an intermediate step

the calculation of the ratios Nm - a d /d Dividing by an as given byn nn n-2* n
Eq. (22) results in the values of dn/dn-2* These ratios are well-behaved

throughout the required range of n. They do not become either extremely

large or extremely small. It is convenient, for computational purposes,

to set the largest D constant equal to unity. The largest value occurs

in the region of n - Z-m, therefore, d Zm is set equal to one. In theory

all of the other D constants can be obtained from dv_ by successive

multiplication of the ratios d n/d n. In practice, however, these

coefficients are not evaluated directly in PANGFN due to the computer

underflow that would likely result from their extreme range in magnitude.

Angular function values obtained from Eq. (12) with dt m set equal

to unity require a normalizing factor to provide the desired Meixner-

Sch~fke normalization. The first step in calculating this factor is to

evaluate the left-hand side of Eq. (24), starting at n - Z-m with d t m set

equal to unity and proceeding both upward and downward in n until convergence

results. Each term in the series is obtained from the previous term by

multiplication (upward) or division (downward) by both the square of the

appropriate D constant ratio and by a ratio of integers to account for the

coefficients. Convergence is assumed when the relative contribution of the

last term (both upward and downward) is less than 10-(NDEC+
I) , where NDEC is

the number of decimal digits in double precision words in the computer.

This procedure should prevent underflow or overflow during evaluation of the

series. The normalizing factor DNUM is then obtained by dividing the

resulting sum into the right-hand side of Eq. (24) and taking the square root.

This quantity is the magnitude of the normalized value for dZm required

to provide Meixner-Schafke normalization of the angular functicas. The

algebraic sign of d Z m is obtained by progressive multiplication of the

signs of the ratios of the D constants, beginning with d2/d0 or d 3/dl,

depending on whether Z-m is even or odd, and continuing to d Zm/d tm_2.

Since d0 and dI are always positive, this product of signs is equal to the

sign of d, . The angular functions are then obtained by multiplying the
s f. 2

sum of Eq. (12) by d.
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Determination of the Associated Legendre Functions

The associated Legendre functions required in Eq. (12) are calculated

in the subroutine "PLEG". Actually, ratios of successive associated

Legendre functions are calculated instead of the functions themselves because

of possible overflow problems when m is large. The recursion relation of

Eq. (14) is modified for this purpose to give:

Tmr = m(n)/p n ) _2n-I n+m-1 + (5
nn n 1n-m (n m)Tm 1rn-n-1

with Tm = 1 and Tm W (2m+l)n. The ratio Tm is well behaved for n j 0;
m m+. n

i.e., for 9 1 900 . If 8 - 90, however, Fm is equal to zero for n-m odd,
n

and em is unbounded or equal to zero, depending on whether n-m is even or
n

odd. The relevant ratios in this case are those of successive nonzero values

of the associated Legendre functions. These ratios are calculated using

T'(0) - Pr(0)/PnM (0) - -(n+m-l)/n-m , n-m even , (261

with TM (0) = 1.
m
The ratios Tm(0) for n-m even are stored in the odd J locations of

n
P(K,J). For convenience in calculating the successive terms in Eq. (12),

the ratios Tm(0) for n-m odd are set equal to unity and stored in the even
n

J locations of P(K,J). To avoid possible numerical difficulties occurring

near = 90% the program sets 0 equal to 900 if it is within PTEST - 10- 7

degrees of this value. The .,onstant PTEST is defined near the beginning

of the main program. The value of PTEST can be decreased if the user

desires angular function values for 8 closer than 10- 7 degrees to 90*.

The associated Legendre functions and thus the angular functions are

equal to zero when n - ±1; i.e., when e - 0 or 1800 and m is unequal to

zero. if the input value for e is within PTEST - 10- 7 degrees of 0 or 1800

and if m is unequal to zero, the program assumes that the argument is equal

to 0 or 180, respectively, bypasses the calculation of T, and directly

sets the angular function S() e
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For purposes of calculating the angular functions SM(c,i) using theMPhe

series of Eq. (12), it is convenient to set Pm(n), the associated Legendre

function that is multiplied by the D constant dp . equal to unity, The

largest term in the series is now equal to or near unity. This choice

eliminates potential underflow and overflow problems in the series. The

sum of the series must then be multiplied by Pt(n) to correct for this choice.

The required value for Pt(n) is obtained from PW(n), which was used in

the same way for S (1) (cn), by multiplication by the stored ratio P (n)/

Pm W). The value for Pm (n)m , required for S ( 1 ) (c,r), is calculated using

Eq. (16). Since Pm(n) can be extremely large when m is large, the value for

Pj(n) is calculated and stored as a logarithm to the base 10 to avoid

overflow.

Determination of the Angular Function

The angular functions are calculated using Eq. (12). The series is

evaluated by starting at n -Z-m and proceeding both upward and downward

in n until convergence is obtained. Each term in the series is derived from

the preceding te:.m by-use of successive multiplication (upward) or

division (downward) of the ratios of D constants and the associated

Legendre functions. To start the process, both dm and Pm (n) and thus the
Legendz

initial term dzPM(n) are set equal to unity. The logarithm to the base

ten of the resulting sum is now taken and added to the corresponding

logarithm of Pm(n) and dpm . This corrects for setting both P (n) and

d t m equal to unity. The resulting logarithm of the angular function is

passed to the subroutine "OUTPUT". "OUTPUT" separates the mantissa from

the characteristic, takes its antilogarithm, and combines it with the proper

sign to obtain the base of the angular function. The number is the output

in two parts: the base (-9.9999999 S base 9.9999999) and its exponent

(-999 : exponent - 999) as given by the characteristic. If the angular

function becomes as large as I010 00 . possibly for very large m, or as small

as 10- 0 0 0 , possibly for 9 - 10- 7 degrees or (180-9) S 10- 7 degrees, then the

exponent printout must be appropriately expanded.
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COMPUTATION TIME

The execution for PANGFN time depends on the input data. In particular,

larger values of c and Z-m take more time. The following examples are

representative of the execution times for PANGFN on the PDP-11/45 computer

at USRD and the TI ASC computer at NRL for 6 - 0, 100, ..., 900: m - 0;

e - 0, 1, ..., 100; and selected values of c (see Table II). The execution

times are nearly independent of m; e.g., the same times as shown here are

obtained for m - 100 and t - 100, 101, ..., 200. The execution times where

only one value of 0 is desired are greater than half of those shwon above.

Therefore, it is economical to include all desired values of 0 in a single

run. (If more than 10 values of 6 are desired, some of the dimension

specifications must be increased. See the section entitled DIMENSIONS AND

STORAGE.)

Table II - Execution time for selected values of c

c PDP-1I/45 TIME TI ASC TIME

1.0 42 s 2.0 s
10.0 48 s 2.4 s
50.0 70 s 3.2 s

100.0 96 s 4.3 s

PRINTED OUTPUT

The output from PANGFN consists of numerical tables, as shown in

Appendix A. Numerical values for the eigenvalue A Z, the desired arguments

0 together with the corresponding angular functions Sm - c,cose), and

accuracy estimates are given for desired choices of c, m, and Z.

The argument (ARG) is printed with three digits to the right of the

decimal point. The eigenvalues (EIG) and the angular functions (S) are each

printed with eight decimal digits. The accuracy estimate (ACC) is printed

as an integer and indicates the number of leading decimal digits in the

printed output that are likely to be accurate. A discussion of the accuracy

estimate is given in the section entitled ACCURACY OF RESULTS. A procedure

for changing the number of printed decimal digits in the output is outlined

under the following section.
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ACCURACY OF RESULTS

The procedure used to obtain the prolate eigenvalues is well-behaved

numerically. Therefore all eight digits printed in the output will be

accurate, with the last digit rounded.

The series expansion used to evaluate the angular function is not always

well-behaved numerically. Subtraction errors can occur in the summation of

the series, especially for large c and low m and Z. A good approximation for

the number of decimal digits of accuracy lost to subtraction error in

this summation is given by SE - LOG (IFTERM/SI1) where FTERM is the largest

term in the series and S1 is the sum Gif the series. It is estimated that

roundoff error, slight inaccuracies in the D constants, and the

representation of the angular function as a logarithm may contribute an

additional loss of two decimal digits of accuracy. Since NDEC is the number

of decimal df.Sits available for double precision words, T = NDEC-SE-2 is the

expected accur~.cy of the calculated value of the angular function. If T

is greater than eight, it is reduced to eight to correspond to the number

of decimal digits printed in the output. If T is less than zero, it is

set equal to zero. The resulting value for T is stored in the array NACC(K)

and output under the heading ACC.

The only time that an accuracy less than eight decimal digits is likely

to be encountered is when c is larger than about 30, and when m and Z are

somewhat less than c. The subtraction error of SE digits obtained in this
case corresponds to a value of S() ) near 10- S F pm(n) with the largest

ce om

term in. the series used to generate 52 (c,n) having a value near p m(q). In

other regions of the parameters c, m, and t, the value of the angular

function is usually accurate to all eight digits.

If the user wishes to change the number of decimal digits printed in

the output of this program from eight, he should make the following changes:

1. Change the Format statement numbered 1 in subroutine

"OUTPUT" to the desired number of digits.

2. Change the Format statements numbered 1009, 1010, and

1011 in the main program to line up the headings to

correspond to change I above.

3. Change the value of KAXAC to the desired number of

printed digits.
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4. Change statement number 10, the statement four lines

before statement number 10, and statement number 200 in

the subroutine "OUTPUT" to contain MIAXAC nines (9's);

i.e., as many as there are decimal digits in the output.
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lA

APPENDIX A
OUTPUT EXAMPLE

C= 10,00000 5L= 5 EI=0.35Z88086D 
02ARG S ACC ARC s ACC ARG S ACC

0.000 0 0 0
0000D+O00 8 10.000 7.645z137D-003 

8 20.000 3.1487679.-001 
8

30.000 3.3948461+0oo0 
8 40.000 2.0741893+0 01 8 50,000 8.6942661 0001 8

60:000 26375871D0o2 a 70.000 5.5070 0 
800086461+0

90,000 1.11251 0 8 00 820S70D+oo2 8 80.000 9.46986710+00. 
a

90.ooo 
9.117118o00038L= 6 EIG= 0-57650685D 

02ARC S ACC ARG 
ACC ARC S ACC

0000 0.O4oooOo 
8 10.000 1.39234600-001 

s 20,000 5.2932335AC000 
8

30.00 5.028147411+001 
8 40,000 2.99053280+02 

8 50.000 8.7167687D+002 
8

90,000 0.004000 +Oo 8 0 292751450003 
8 8 0,000 2.36s19830+

0 0 3  8
L= 7 EIG: 0.796032270 

02ARC s ACC ARC S ACC ARC 
ACC

0.000 D+008 

20,000 4.42831000 
8

30,000 3.71580s55+002 8 40,000 1.59202200+003 8 50000 460.000 6.551S5040+00
3  8 70.000 4.8516398D+003 8 80.000

90,000 S.4603064D+ 003 8 a163 8S 47 +003 8

L= 8 EIG= 0.10171211D 03

ARC S ACC ARC S ACC ARC S ACC

0.000 0 
8 10.000 7.774:8830+000 

8 20.000 2.50715800002 
8

30.000 1.81584289+003 8 0-00050.000 
1.22168960004 A90000 1-10081460+004 8 70.000 -1,69031003 8 80 12286D+004 8

90000 0-00000000+000 8081+0 
80.0 00 1.0092860D+004 8

L:: 
9 EIG= 

0.12429378D 
03

ARC s ACC ARC S ACC ARG s ACC

0.000 O.O000000D+O00 
8 10.000 3.3727130+0001 

8 20,000 1.05631020+003 
8

30,000 6.582327211+003 
8 40.000 1.81617870+004 

8 50,000 2 330328107II+ 
8

60,000 4,5607642D+003 a 70.000 -1.726779711+004
9 0 .0 0 0 1 .6 6 8 8 4 6 6 0 + 0 0 4 8 8 0 0 0 0 .2 38 2 4 8 9 8 2 D 0 0 3 8

L= to EIG= 0.147678230 
03ARC s ACC ARC S ACC ARC S ACC

0,000 0.00000000+000 
8 10.000 1.32418380+002 

8 20,000 3.57120610+003 
8

30.000 1.8855714D+004 
8 40.000 3.91865680004 

8 50.000 2,6027-83D+004 
8

60.000 -2,0638275D+004 
8 70,000 -1,7417839D+004 

0 80.000 2.53143150+004 
a

90,000 O.Oo000000 +O00 8
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APPENDIX B

PANGFN LISTING

PROGRAM PANGFN
C
C A FORTRAN COMPUTER PROGRAM FOR CALCULATING NUMERICAL
C VALUES OF THE PROLATE ANGULAR FUNCTION OF THE FIRST KIND
C AND ITS ASSOCIATED EIGENVALUES.
C

DIMENSION BLIST(250),GLIST(250),ENR(250),P(10,5OO),S(3),
IARGG(3),IIS(3),PNORM(10),NACC(3),PLEG1(10),PTEMP(1O)
DOUBLE PRECISION AJARGARGGARGtARR
DOUBLE PRECISION BLIST
DOUBLE PRECISION CLCOEF
DOUBLE PRECISION DARG,DEC,DC,DNUMDNEW,DOLD
DOUBLE PRECISION EAEIG2,EIG3,EIG4,EIGS,ENREXEXI
DOUBLE PRECISION FTERM
DOUBLE PRECISION GLIST
DOUBLE PRECISION CCSLC1
DOUBLE PRECISION PPIPLEGIPNORMPTEMPPTEST
DOUBLE PRECISION RMRM2,RNDEC
DOUBLE PRECISION SS1,SIGN
COMMON /BLK2/ BLISTGLISTENR
COMMON /BLK3/ DECNDEC

C
C THE FOLLOWING TWO STATEMENTS MUST BE MODIFIED TO CONFORM WITH THE
C USERS COMPUTER
C NDEC: THE MAXIMUM NUMBER OF DECIMAL DIGITS AVAILABLE ON THE
C USER'S COMPUTER IN DOUBLE PRECISION ARITHMETIC.
C NEX: THE MAXIMUM EXPONENT AVAILABLE FOR A DOUBLE PRECISION
C NUMBER
C

NDEC=16
NEX=75

C
C

PI=3.14159265358979323846264338327950288DO
MAXAC=8
RN DEC=NDEC+1
DEC=10. D0**(-RNDEC)
EX=1O.D0*(NEX-5)
EX1=10. D0t:(5-NEX)
PTEST=1 ,D-7

C
C READ IN INITIAL ARGUMENTS
C
1 READ 11O1,MMIN

READ 11O1,IM
READ 11O1,MNUM
READ 1iOiLNUM
READ 1102,ARGI
READ 1102,DARG
READ 1101,NARG
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READ 1102YCI
READ 1102,TjC
READ 11017NC

C
C BEGIN PROGRAM
C OUTER LOOP K LOOP
c NEXT LOOP C LOOP
C INSIDE LOOP L LOOP
C

Do 500 ir'umm=1,MNUM
M=MMIN+( IDUMM-t )*Ii1
RM=Mi
RM2=2,DtO*RlI
JHI=2.*(LNUM+Cl+(N4C-1 ) *DC+NDEC)
CALL PLEG(MJHI vARGIDARGNARGPPPNORMFIPTEST)

DO 400 JNC=1,NC
DO 3 K=I.,NARr3

PTElIP 00=I I.ED0
PLEGl(N)=PNORM1(K)

3 CONTINUE
C=C1+(JNC-1 )*EIC
CSQ=C*C
EIG2=0#,DO
EIG3=0#*DO
EIG4=0 .DO

EIG5=0 *DO
PRINT 1005iCYM
DO 300 IL=1rLNUM
L=1+ IL-i

C
C GET THE STARTING EIGENVALUE
C

CALL GETEIG(LMF CiCLEIG2,EIG3YEIG4,EIGS)
L C

C REFINE THE STARTING VALUE
C

CALL CONVER(LYMYCYCLYEIG3YEIG5)
IW6=(L-M)/2
lX=L-M-2*IW6
IXX=IX-i
IF(L.EG.M) GO TO 7
DO 5 K=IYNARG

FITEMP (K) =PTEKF (K) *( KL-M+I)
IF(DABS(P'TEMP(K)).LT.EX) GO TO 5
PLEG1( K) =DLO.i ( DADtS ( fTEiIF (K ) )+PLEG1( K)
IF (F'TEMF (K) LT ..DO)FPTEM1P (K%)=-1.DO
IF (PTEMP (K) *GT. DO )PTEHi ( K) =1 D'0

5 CONTINUE
7 CONTINUE

LIMi1=2*(CL-M+C+NDEC)
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IBLIM=LIMl/2-IX
SIGN=1 .E'

10 DO 30 I=1,IBLIM
ARR=IX+I+I
E A =AR R+AR R + RM2
IF(IoGToIW6) GO TO 20
SIGN=SIGN*(ENR(I)/DAE'S(ENR(I)')

20 ENR(I)=(EA-1D)*C(EA+iEi0)*ENIR(I)/( (ARR+RM2)*
1 (ARR+RM2-1.E'0)*CSO)

30 CONTINUE
C
C COMPUTE THE NORMALIZING FACTOR
C

DNUM= .BO
COEF=1 .DO
JLOU=L-M+2
J TERM =1W 6
DIO 50 J=JLOWYLIMlp2

AJ=J
JTERM=JTERM+ 1
COEF=COEF*( (AJ+RM2)*ENR(JTERM)/AJ)*((AJ+RM2-l.DO)*

1 ENR(JTERM)/(AJ-1.DO) )*(.AJ*2,DO+R.M2-3.D0)/(AJ*2,D0O+RM2
1 +1,DO)

DN U M =DNU M+ CO EF
IF(E'ABS(COEF/DNUM) .LT.DEC) GO TO 60

50 CONTINUE
60 JLOW=L-M

IF(JLOWLT*2) GO TO 71
CO EF = .* I
JTERM=IW6
J=JLOW
DO 70 JJ=2,JLOWY2

AJ=J
COEF=COEF:4cAJ/(AJ+RM2)/ENR(JTERM))*((AJ-1,DO)/(AJ+RM2

I -I.DO)/ENR(JTIERM) ):(Aj*2. *DO+RM2:-+1.DO)/(HAj*24.EiO+RM112-3,.DO)
JTERM=JTERM-1
J =J-
N U M = ENU M+ CO EF
IF(DABSCrOEF/DNUM).LT.DEC) GO TO 71

70 CONTINUE
71 DNUM=1 . D/DSQR<T (DNUM)

191 EPil
JLOW=IW6+1

PRINT 1006YLYCL
IF(NARG,GE.3)PRINT 1009
IF(NARG.EO,2)I:RlNTF 1010
IF(NARG.LE. 1)PRINT 1011

C
C COMPUTE THE ANGULAR FUNCTION S3
C
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DO0 200 K=1,NARG
72 ARG=ARG1+(K-1.DO)*E'ARG
C
C FOR ARG=0,90,OR 180 DEGREES USE SPECIAL METHODS TO DETERMINE
C ANGULAR FUNCTION
C

IF( (DAES(ARG-90,DO) .LT.FrTEST) .AND. (IX.EQ. I)) GO TO 75
IFU(DABS(ARG-180,D0),LT.FTEST).AND,(M.NE.O)) GO TO 75
IF((DABS(ARG).LTF'TEST).AND.(M.NE.0)) GO TO 75
GO TO 80

75 S(ISTEP)=-EX
IIS(IST EP)= 1
NACC( ISTEF)=MAXAC
GO TO 150

80 FTERM=EXI
DOLDi 1.*DO
IF(FTEMP(K) *LT.0,DO)DOLD=-.El0
S1= DO LD
DO 100 J=JLOWIBLIM

ENEW=DOLD*ENR(J)*gP(R,JJ+IXX+2)*FP(KJ+J+IXX+i)
S=S 1+ DNEW
IF(DAE4S(DNEW) .GT.FTERM)FTERM=A'.S(DNEWA)
IF(S1.EQ,0.DO) GO TO 95
IF(DABS(DNEW/Sl),LT.DEC) GO TO 101

95 DOLD=DNEW
100 CONTINUE
101 IF(YW6,LT.1) 0O TO 111

DOLEI1 *4.0
IF(FPTE-MF(K) .LT.0.DO)DOLD=-1.DIO
J=IW6
DO0 110 JJ=1,1W6
DNEU=DOLD/(F(KJ+J+IXX+2)*P(KJ+J+IXX+1))/ENR(J)
51 Si +ElNEW
IF(DABS(DNEW) .GT.FTERMi)FTERM=E'ADS(DNEW)
IF(Sl.EQ-0.DO) GO TO 109
I1-(DAES(DNEW/S1).LT.DEC) GO TO 111

109 DOLD=DNEW
J=J-1

110 CONTINUE
ill IF(S1.EO0.DO) GO TO 120

S(ISTEP)=DLOGIO(DASS(Sl))+DLOG1O(DABS(DNUM))+
1 DL0G1O(DABS(PTEMP(K)))+FPLEGI(K)

IIS(ISTEP)=1
IF(S1 .LT .0.D.0)1 IS( ISTEP)=-1
IF(SIGNLT.0,DO)113'.ISTEP)=-1*IIS(ISTEFP)
GO TO 125

120 S(ISTEP)=-EX
IIS( ISTEMP)1l

125 NACC(ISTEF')=0L0G10'ThABS((FTERM+EX1)/(S1+EXI)))
NACC( ISTEFP)=NDEC-NACC-(1ISTEFP)-2
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1F(NACC(ISTEP) .LT.0)NACC( ISTEF)=0
IF(NACC(ISTEFP),GT.lIAXAC)NACC(ISTEP=lAXAC

150 ARGG(ISTE')=iRG
C
C TIME TO OUTPUT
C

IF(ISTEF.NE*3) GO TO 160
NUM=3
CALL OUTPUT(ARGG, IISYSYNACCYNUM)
ISTEP=0

160 ISTEP=ISTEP+1
IF(K.NENARGOR.ISTEP*EG.1) GO TO 200
N U M=ST E P-1
CALL OUTPUT(ARGGyIISYSiNACCvNUM)

200 CONTINUE
PRINT 1007

300 CONTINUE
400 CONTINUE
S00 CONTINUE
1005 FORMAT(43Xy2HC=PF15 .5,9X,2HM=, 16/I)
1006 FORMAT(1X?2HL~tI6t6H EIG=tD15S)
1007 FORMAT(/)
1008 FORMAT(1HlY49Xt23HFROLATE ANGLE FUNCTIONS!)
1009 FORIIAT(3(8X,3H-ARGsOX,HS,9X,3HACC,3X))
1010 FORMAT(2(SXp3HARG,1OX,1HS,9X,3HACC,3X))
1011 FORMAT(8X,3HARG, 10X1'lH.Sp9X,31HACC)
1101. FORMAT(I5)
1102 FORMAT(t'20.10)
9999 CONTINUE

EN D
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SUBROUTINE PLEG(MJHiARG1,DARG'NARGFF'NORMF1,PTEST)
DOUBLE PRECISION APIYARGrARG1
DOUBLE PRECISION BARG
DOUBLE PRECISION BARG
DOUBLE PRECISION FiPI'FNORMYFTEST
DOUBLE PRECISION RJPRJ2tRIIRMP
DIMENSION P(l0v500)yFNORM(i0)

C
* C INITIALIZE VARIOUS COEFFICIENTS

C
AFI=PI/180 .D0
RM=M
MP=2*M-l
DO 200 K=1,.NARG

ARG=ARG1+(K-1 .DO)*EIARG
BARG=DCOS(ARG*API)
FNORM(K)=0.DO

C
C FOR ARG=0',907 OR 180 DEGREES USE SPECIAL METHODS TO DETERMINE
C LEGENEIRE FUNCTION RATIOS
C

IF(DABS(ARG-?0.['0).LT.PTEST) GO TO 150
IF( (DABS(ARG-180,DO) .LT.FTEST) .ANI. (M.NE.0)) GO TO 190
IF((EABS(ARG).LTPTEST).AND.(M.NE.0)) 00 TO 190

C
C NORMAL COMPUTATION OF LEGENDRE FUNCTION RATIOS
C
50 P(Krl)=I.D0

PK, 2) =(2 6E0*RM+1. DO) *BARG
DO 100 J=3,JHI

R J=J + R
RJ2=2.B O*Rj
P(KJ)=(URJ2-3.E'0)*BARG-(RJ+RM-2.D0)/P(KJ-1))/(RJ-RM-1.DO0)

100 CONTINUE
IF(M.EQ*0) GO TO 200
IMN= NP
DO0 120 IIM=1,MPY2
R NP =I
FNORM(K)=FPNORM(K)+E'LOG1O(RMFP)+DILOG1O(DABS (ESIN(ARG*AP'I)))

* IM=IM-2
120 CONTINUE

GO TO 200
C
C COMPUTATION OF LEGENEIRE FUNCTION RATIOS FOR ARG=9O DEGREES
C
150 P(Kt1)=l.DO

DO 160 J:3rJHI?2
F:J =J +RN
P(KJ)=-(RJ+RM-2.DO)/(RJ-RN-1.DO)
P(KJ-!)1 .D0
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160 CONTINUE
IF(M.EQO) GO TO 200
IM=MP
DO 170 IIM=1,MPP2

RMP=IM
PNORM(K)=PNORh(K)+DLOG1O(RMP)
I1=I-2

170 CONTINUE
GO TO 200

190 DO 195 J=EJHI
195 P(KJ)=O.O
200 CONTINUE

RETURN
END
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SUBROUTINE GETEIG(LdiCCLEIG2,EIG3,EIG4tEIGS)
DOUBLE PRECISION BOSH
DOUBLE PRECISION CLrCCSO
DOUBLE PRECISION EIG2yEIG3tEIG4rEIG5
DOUBLE PRECISION RvrNLyRL2~rMpRM2
DOUBLE PRECISION LAMltLAM27LAM3?LAi4

C
C COMPUTE SOME HEAVILY USED VARIABLES
C

CSQ=C*C
RL=L
RL2=2,.D0*RL
RM=M
RM2=2.*DO*RM
R=RL-RM

C
C THE CASE OF SMALL M AND' LARGE C
C

IF(LEQ.(M+4).ANDi.C.GT.8.DO0.ANDI.M.LT.3) GO TO 200
C
C APPROXIMATIONS BASED ON PREVIOUS EIGENVALUESP IF AVAILABLE
C

IF(L6GTs(M+3)) GO TO 30
C
C USE EXPANSION IN TERMS OF CSO FOR LOW Cy AND THE EXPANSION
C IN TERMS OF 1/C FOR LARGE C (C>8)
C

IF(C.GT.8.DO) GO TO 100
IF(C.GT..6,DO.ANDM.LTr,4) GO TO 200

C~ COMPUTE COEFFICIENTS FOR CSO EXPANSION

1( (LRL3*(RL2-1 , DO RL- I*R21 *(L+.))

LAM3=(5L-RL-1.)*(RL-RM)*(RL+RM1.)*(RL+RM2)/
3( (RL2+1. )*(RL2+3. )**(RL2+5))L-t*RL-+.

LAM4=(4.*RM*RM-1. )*( (RL-RM+1. )*(RL-RM+2. )*(RL+RM+i, )*(RL+RM+2.)
1/ (RL2-1, )*(RL2.+1. )*(RL2+3. )**95*(RL2+5. )*(RL2+7.) )-
2(RL-RM-1.Vlc(RL-RM)*(RL+RM-1.)*(RL+RM)
3/((RL2-5.)*(RL2-3.)*(RL2--1.)**5*(RL2+1,)*(RL2+3.)))
CL=LAMI+CSO*'(LAt12+ CSQ*(LAM3+LAM4*CSQ))
EIG2=EIG3
EIG3=EIG4
EIG4=EIG5
RETURN

30 CONTINUE
C
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C EXPANSIONS BASED ON PREVIOUS EIGENVALUES
C FIRST THROUGH THIRD ORDER
C

IF(L*GT*(3+M)) Ga TO 50
IF(L.GT.(2+M)) GO TO 40

C
C FIRST ORDER
C

CL=2.*DO*EIGS-EIG4
31 EIG3=EI04

EIG4=EIG5
RETURN

C
C SECOND ORDER
C
40 CL=3.DO*(EIGS-EIG4)+EIG3
41 EIG2=EIG3

GO TO 31
C
C THIRD ORDER
C
50 CL=4.E'*(EIG3+EXIG5)-6,D0*EIG4-EIG2

GO TO 41
100 CONTINUE

IC=C
C
C IF M>6 THEN THE EIGENVALUES ARE VERY REGULARLY SPACED
C

IF(M.GT.6.AND.L.GTM+L) GO TO 30
C
C USE L*(L+l) AFPPROXIMATIONS FOR L=M AND L=M+l
C

IF(M.LT.(10+IC)) GO TO 200
CL=RL* CRL+i . DO)
EIG4=EIG5
RETURN

C
C COMPUTE ESTIMATE WITH ASYMPTOTIC EXPANSION
C
200 E'OSH=1.EIO

IF(M.E.EO) BOSH=0,DO
CL=(R+R+1.)*C-. 2'*(2'. *R*R+R+R+3.)-(R+R+1.)*(R*R+3,)/(C*16,)
i+RM*RM+(RM-1. )*(RL-RM)*BOSH
EIG2=EIG3
El 03 =El 04
EIG4=EIG5
RET U RN
E ND
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SUBROUTINE CONVER(LpMCCLyEIG~yEIG5)
DOUBLE PRECISION BLIST
DOUBLE PRECISION CLPCLL-,CLSPACPCLUtCORAYCORB
DOUBLE PRECISION DErDECrDL
DOUBLE PRECISION EIG3yEIG~yENRrENRC
DOUBLE PRECISION FL
DOUBLE PRECISION GLYGLIST
DOUBLE PRECISION CrCSO
DOUBLE PRECISION RMPRM21R
DIMENSION BLIST(250),GLIEST(250)PENR(250J)
COMMON /BLK2/ BLISTYGLISTPENR
COMMON /BLK3J/ DECYNDEC

C
C CALCULATE SOME HEAVILY USED CONSTANTS
C

CSQ0= '-C.:C
RM=M
RM2=2,*DO*RM

C
C DETERMINE EIGENVALUE SPACING OF PREVIOUS EIGENVALUES
C

GL=EIG5
IF(L*EQ.M) CLSPAC=CL
IF(L.NE.M) CLSPAC=EIG5-EIG-3
IW6=(L-M)/2

C
C IF EST--LAST EIG THEN EST=LAST EIG

IF(CLLTGL)CL=GL
FL=CL
J N EE =0
IX=L-M-2*IW6
ISC=2+IX
LIMI=2* (L-M+C+NDEC)

IF(LIMI.LTISC) GO TO 25
C
C COMPUTE BETA COEF,
C

t DO 20 I=ISCYLI~ltr2
R=I
BLIST(J)=R*(R-15 D0) *(RM2+R)*(RMi2+R-I. DO)

1. *CSQ*CSQ/( (RM2+2*DO*IR-1 .DO)
2 *(RM2+2.*DO*R-1 .DO)*(RM2+2. DO*R -3, DO)*(RM2+2 .DO*R+1 * DO))

J=J+1
20 CONTINUE
25 J=1

IE' 21=16 C-i
LI Ml1 =LI Ml+ 1
IF(LIM1I.I.T.IE'21) '30 TO 35
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C
C COMPUTE THE GAMMA COEF,
C

DO 30 I=ID21YLIMllt2
R=I-I
GLIST(J)=(RM+R)*(RM+R+1.D0)+,5D*CS*(,E'O

I -(4.DO*RM*RM-1.EI0)/U(RM2+-
2 2.EI0*R-1 .tI)*(2.0RM+2.D0*R+3.D0O)))

J=J+.
30 CONTINUE

35 IFC=.
IELIM=LIMI/2-IX
I GLI i= I BLI M+1
IRIO=IW6+l
IW1=IW6+2

40 ENR(1)=CL-GLIST(l)
IF(IW6,LTol) GO TO 55

C
C EVALUATE THE CONTINUED FRACTION
C

DO 50 I=IP1W6
ENR(I+1)=-BLIST(I)/ENR(I)-GLIST(I+1)+CL

50 CONTINUE
55 ENR( IBLIM)=-BLIST( IBLIM)/(GLIST( IGLIM) -CL)

IWI.5=IBLIM-1
IF'=IW 1+IW15
IF(IW15,LT*IW1) GO TO 65

C
C EVALUATE THE CONTINUED FRACTION
C

DO 60 I=1WIYIWI5
IPI=IP-I
ENIR(IPI)=-BLIST(IPI)/(GLIST(kIPI+1)-CL+ENR(IPI+1))

60 CONTINUE
65 ENRC=-BLIST(IRIO)/(GLISTIRIO+)-CL+ENR(ITRIO+1))

DE=ENRC.*ENRC/BLIST( IRIO)
CORB=DE
IF(IBLIM.LT.IW1) GO TO 75

C
C COMPUTE THE DENOMINATOR IN THE BOUWKAMF*I C LDU 70 I=IW1,IBLIM

DE=ENR(I)*ENR(I)/EtLlST(I)*EE
CO RB=CO RB +LE
IF (DABS(DE/CORE).LT.EiEC) GO TO 75

70 CONTINUE
75 CORA=1.DO

DE=1.E'0
IF(IW6.LT.i) GO TO 90
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C COMPUTE THE DENOMINATOR IN THE BOUWKAMP
C

DO 80 I=1,1W6
DE=BLIST(IRIO-I)/(ER'R(IR!O-I)*ENR(IRIO-I))*DE

CORA=CORA+DE
IF(DABS(DE/CORA),LTDEC) GO TO 90

80 CONTINUE
C
C COMPUTE THE CORRECTION TO THE EIGENVALUE
C
90 DL=(ENRC-ENR(IRIO))/(CORA+CORB)

CL=CL+DL
C

C EIGENVALUE ACCURATE ENOUGH?
C

IF(DABS(DL/CL).LT.DEC) GO TO 100
IFC=IFC+1
IF(IFC.LT.NDEC) GO TO 40

100 CONTINUE
C
C IF RANGE OF EIGENVALUE ALREADY ESTABLISHED (JNDE NE 0) BRANCH
C TO TEST WHETHER THE RESULTING EIGENVALUE IS WITHIN THE
C ESTABLISHED RANGE
C

IF(JNDE.NEO) GO TO 120
C
C TEST OF THE EIGENVALUE FOR JNDE = 0
C

IF(CL.GToGL) GO TO 115
C
C CONVERGED TO THE NEXT LOWER EIGENVALUE OF THE SAME PARITY
C

CLL=FL
CLU=FL+CLSF'AC*l.5DO
GO TO 130

115 IF((CL-FL).LT(FL-GL)) GO TO 140
C
C CONVERGED TO THE NEXT HIGHER EIGENVALUE OF THE SAME PARITY
C

CLU=FL
CLL=.5DO*( FL+GL)
GO TO 130

C
C NARROWING OF RANGE IF THE CORRECT EIGENVALUE HAS NOT BEEN OBTAINED

C120 IF(CL.GT-CLL) GO TO 122
CLL=FL
G0 TO 130

122 IF(CL.LT.CLU) GO TO 140
CLU=FL
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C
C EIGENVALUE IS NOW SOMEWHERE IN THE RANGE ESTABLISHED ABOVE
C CHOOSE THE MIDPOINT, AND REPEAT THE BOUWKAMP PROCEDURE
C
130 CL=.SDO*(CLL+CLU)

FL=CL
IFC='
JNDE::JNDE+l

C
C IF MORE THAN 50 NARROWINGS ARE REQUIRED THEN SOMETHING IS WRONG
C

IF(JNDE.EQ.50) GO TO 900
GO TO 40

140 EIG5=CL
RETURN

C
C ERROR PRINTOUT
C
900 PRINT 999,L
999 FORMAT(lX,37HERROR IN EIGENVALUE ROUTINE CONVER AT/

113H EIGENVALUE *,I5,29H THIS VALUE MAY BE INACCURATE)
RETURN
END
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SUBROUTINE OUTPUT(AIBE4,NACCFNUM)

l1F3(3) ,ISIG(3) ,NACC(3)
INTEGER PLUSPMINUS
DIATA PLUS/1H+/YMINUS/1H-/
DOUBLE PRECISION ABYDIBrEDB
DO 50 I=1,NUM

2 IF(B(I).LE.-999.DO) GO TO 100
3c IF(B(I).GE.999.DO) GO TO 200

DB(I)=B(I)1,
IIB(I)=IB(I)-

10 IF(B(I).GT*9,9999999D0) GO TO 10
B(I)=B(I)/10t'0

IIB(I)=IIB( 1)-i
20~ G TO 20I)DI(I

10 IF(IB(I)*T.E999900) GO TO2

I IB( I )=-IIB( I)

ISIG( I)=MINU!S
30 IPI(I)=IIB(I)/100

II'2( I)=IIE( I )/10-IP1 (I )*10
IF3( I)=IIB( I) -IF1 (I )*100-1P2( I ))Kl

so CONTINUEI ~ ~PRINT 1, (A(I) ,B(I) ,ISIG(I) ,IP1(T) ,IF2(I) ,1P3(I) ,NACC(I) ,I=lNUM)
RETURN

100 B(I)=0.DOo
ISIG( I)=PLUS
IF1 ( I) =0
iF2 (I) =0
1F3 ( I )=0
GO TO 50f*

200 E(I)=9?.999999DE'
ISIG( I)=F'LUS
IPI(I)=9

1'3 (I)=9
NACC(I )=0
GO TO 50

ENDL
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